The Biocatalytic Potential of Extremophiles and Extremozymes
نویسندگان
چکیده
Extremophiles are bizarre microorganisms that can grow and thrive in extreme environments, which were formerly considered too hostile to support life. The extreme conditions may be high or low temperature, high or low pH, high salinity, high metal concentrations, very low nutrient content, very low water activity, high radiation, high pressure and low oxygen tension. Some extremophiles are subject to multiple stress conditions. Extremophiles are structurally adapted at the molecular level to withstand these harsh conditions. The biocatalysts, called extremozymes, produced by these microorganisms, are proteins that function under extreme conditions. Due to their extreme stability, extremozymes offer new opportunities for biocatalysis and biotransformation. Examples of extremozymes include cellulases, amylases, xylanases, proteases, pectinases, keratinases, lipases, esterases, catalases, peroxidases and phytases, which have great potential for application in various biotechnological processes. Currently, only 1–2 % of the microorganisms on the Earth have been commercially exploited and amongst these there are only a few examples of extremophiles. However, the renewed interest that is currently emerging as a result of new developments in the cultivation and production of extremophiles and success in the cloning and expression of their genes in mesophilic hosts will increase the biocatalytic applications of extremozymes.
منابع مشابه
Extremophiles: An Overview of Microorganism from Extreme Environment
Extremophilic organisms are primarily prokaryotic (archaea and bacteria), with few eukaryotic examples. Extremophiles are defined by the environmental conditions in which they grow optimally. The organisms may be described as acidophilic (optimal growth between pH 1 and pH 5); alkaliphilic (optimal growth above pH 9); halophilic (optimal growth in environments with high concentrations of salt);...
متن کاملEditorial: Enzymes from Extreme Environments
Enzymes are nature's biocatalysts and are equipped with high catalytic activity and remarkable substrate specificity. Enzymes catalyze the metabolic reactions necessary for all of life's processes and are able to catalyze reactions at much higher rates than would be possible without their action. The majority of enzymes are optimized to perform under physiological conditions or conditions consi...
متن کاملMarine Extremophiles: A Source of Hydrolases for Biotechnological Applications
The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for b...
متن کاملA delve into the exploration of potential bacterial extremophiles used for metal recovery
A multitude of microbes are involved in the solubilisation of minerals and metals as this approach offers numerous advantages over traditional methods. This strategy is preferred as it is eco-friendly and economical, thus overcoming the drawbacks of the traditional approach of pyrometallurgy. Many different types of bacteria are employed in the process of Bioleaching, which are collectively gro...
متن کاملBench-Scale Production of Heterologous Proteins from Extremophiles Escherichia coli and Pichia pastoris based expression systems
Over the past few years considerable research attention has been assigned to extremophiles as sources of extremozymes due to their applicability in industrial processes, and the development of eco-friendly technologies. The establishment of efficient production strategies for heterologous proteins is an empirical process requiring broad background knowledge on available expression systems toget...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004